Two New Cucurbitane Triterpenoids from Immature Fruits of Momordica charantia

by Zhen-Jie Li^a)^b), Jian-Chao Chen^a), Yuan-Yuan Deng^a), Na-Li Song^a)^c), Mu-Yuan Yu^a), Lin Zhou^a), and Ming-Hua Qiu^{*a})

^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China

(phone: +86-871-65223255; fax: +86-871-65223225; e-mail: mhchiu@mail.kib.ac.cn)

^b) Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China

^c) Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, P. R. China

Two new cucurbitane triterpenoids, kuguacin X (1) and kuguaglycoside I (2), together with three known analogs, were isolated from immature fruits of *Momordica charantia*. By detailed analysis of IR, NMR, and MS data, acid hydrolysis, and comparison with spectroscopic data of known compounds, the new compounds were determined to be (23E)-5 β ,19-epoxycucurbita-6,23-diene-3 β ,22 ξ ,25-triol (1) and (23E)-5 β ,19-epoxycucurbita-6,23-diene-3 β ,22 ξ ,25-triol (1) and (23E)-5 β ,19-epoxycucurbita-6,23-diene-3 β ,22 ξ ,25-triol (2).

Introduction. – Momordica charantia (bitter melon) is a cucurbitaceous plant cultivated in Asia, Africa, and South America. Its fruit is a popular vegetable in the south of Asia. Fruits, vines, leaves, and roots of *M. charantia* have been used to treat toothache, diarrhea, furuncle, and diabetes in China. Some cucurbitane compounds from *M. charantia* showed bioactivities, such as antidiabetic [1][2], anticancer [3], antiinflammatory [4], antiulcer [5], antifeedant [6], free-radical-scavenging [7], and antigluconeogenic activities [8]. In our previous studies, some cucurbitane triterpenoids were isolated and identified from *M. charantia* [9–13]. In the course of our search for potential bioactive cucurbitacins from *M. charantia*, two new ones, named kuguacin X (1) and kuguaglycoside I (2), along with three known compounds, goyaglycoside-d (3) [14], karaviloside II (4) [15], and momordicacoside G (5) [16], were isolated and identified (*Fig. 1*) on the basis of spectroscopic analysis and acid hydrolysis.

Results and Discussion. – Compound **1** was obtained as colorless powder. The molecular formula was determined as $C_{30}H_{48}O_4$ by HR-ESI-MS (m/z 473.3619 ([M + H]⁺; calc. 473.3625)), ¹³C-NMR, and DEPT spectra. The IR spectrum showed the presence of OH (3468 and 3402 cm⁻¹) and C=C (1644 cm⁻¹) groups. The ¹H-NMR spectrum of **1** (*Table*) exhibited the presence of seven Me groups at $\delta(H) 0.73(s)$, 0.78 (s), 0.88 (s), 1.22 (d, J = 8.0), 1.35 (s), 1.53 (s), and 1.54 (s). The ¹³C-NMR spectrum of **1** revealed 30 C-atom signals, which were assigned by DEPT experiments as seven Me, seven CH₂, and ten CH groups including four olefinic C-atoms, and six C_q-atoms. These signals indicated that **1** was a typical triterpenoid. The C-atom signals at $\delta(C)$

^{© 2015} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of 1-5

132.2 (*d*, C(6)), 131.2 (*d*, C(7)), 125.9 (*d*, C(23)), 140.9 (*d*, C(24)), 87.4 (*s*, C(5)), and 79.6 (*t*, C(19)) further indicated that **1** belonged to the group of cucurbitane-type triterpenoids [17][18]. Comparison of the NMR data of **1** with those of (23E)-5 β ,19epoxycucurbita-6,23-diene-3 β ,25-diol [18], indicated that the two compounds were very similar except for one OH group at C(22) (δ (C) 73.8 (*d*)) in **1**. The signal of C(22) was shifted downfield from δ (C) 39.1 (*t*) in (23*E*)-5 β ,19-epoxycucurbita-6,23-diene-3 β ,25-diol to 73.8 (*d*) in **1**, which indicated that the OH group in **1** was linked to C(22). The HMB correlations of the H-atom at δ (H) 4.55 (*dd*, *J* = 3.60, 3.55, H–C(22)) with the C-atoms at δ (C) 43.0 (C(20)), 13.0 (C(21)), and 125.9 (C(23)) in **1** further confirmed the above deduction (*Fig.* 2). The signals at δ (H) 3.54 (br. *s*, H–C(3)) and δ (C) 76.1 (*d*, C(3)) suggested that the relative configuration of the OH group at C(3) was β [11][17]. ROE correlations between δ (H) 3.54 (br. *s*, H–C(3)) and 2.24–2.26

Fig. 2. Key HMBC $(H \rightarrow C)$ and ROESY $(H \leftrightarrow H)$ correlations of 1

Table. ¹*H*- and ¹³*C*-*NMR* Data (in (D_5)pyridine) of **1** and **2**. δ in ppm, J in Hz.

Position	1 ^a)		2 ^b)	
	$\delta(H)$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
1	1.50 - 1.54(m), 1.43 - 1.47(m)	17.8(t)	1.46 - 1.49(m), 1.69 - 1.74(m)	19.8 (t)
2	1.94 - 1.97 (m), 1.86 - 1.91 (m)	27.5 (t)	1.71 - 1.74 (m), 2.43 - 2.45 (m)	26.4(t)
3	3.54 (br. s)	76.1(d)	3.57–3.61 (<i>m</i>)	85.3 (d)
4		37.4 (s)		38.3 (s)
5		87.4 (s)		84.3 (s)
6	6.10 (d, J = 10.0)	132.2(d)	6.30 (d, J = 9.7)	130.0(d)
7	5.58 (dd, J = 9.7, 3.7)	131.2(d)	5.61 (dd, J = 9.6, 2.6)	132.6(d)
8	2.24 (<i>m</i>)	51.9 (d)	2.54 (br. s)	45.2(d)
9		45.4(s)		50.4(s)
10	2.24 - 2.26 (m)	38.9(d)	2.63 - 2.66 (m)	40.7(d)
11	1.58 - 1.63 (m), $1.32 - 1.34$ (m)	23.7(t)	1.67 - 1.69(m), 2.37 - 2.41(m)	21.9(t)
12	1.55 - 1.58 (m), 1.51 - 1.53 (m)	30.9(t)	1.47 - 1.50 (m), $1.52 - 1.55$ (m)	30.0(t)
13		45.5(s)		44.9 (s)
14		48.2(s)		47.9 (s)
15	1.23 - 1.25 (m), 1.20 - 1.22 (m)	33.3(t)	1.15 - 1.19 (m), 1.22 - 1.26 (m)	33.4(t)
16	1.96 - 2.00 (m), 1.46 - 1.50 (m)	27.8(t)	1.24 - 1.28 (m), $1.87 - 1.90$ (m)	27.6(t)
17	1.58 - 1.63 (m)	47.5(d)	1.47 - 1.50 (m)	50.4(d)
18	0.78(s)	14.9(a)	0.84(s)	14.6(a)
19	3.60 (d, J = 8.4), 3.51 (d, J = 8.3)	79.6 (t)		182.2(s)
20	2.10-2.15 (m)	43.0(d)	1.43 - 1.47 (m)	36.6(d)
21	1.22 (d, J = 8.0)	13.0(a)	0.92 (d, J = 4.7)	18.8(a)
22	4.55 (dd, J = 3.60, 3.55)	73.8(d)	1.80 - 1.84 (m), 2.22 - 2.24 (m)	39.5(t)
23	6.23 - 6.31 (m)	125.9(d)	5.92 - 5.94 (m)	124.2(d)
24	6.20 - 6.28 (m)	140.9(d)	5.92 - 5.94 (m)	141.8(d)
25		69.6 (s)		69.8(s)
26	1.54(s)	30.7(a)	1.54(s)	30.9(a)
27	1.53 (s)	30.8(a)	1.54(s)	30.9(q)
28	1.35 (s)	20.8(a)	0.89(s)	19.3(a)
29	0.88(s)	24.6(q)	0.77(s)	23.9(a)
30	0.73(s)	20.1(q)	1.53(s)	20.8(q)
Allo	0.10 (0)	20.1 (9)	1.00 (0)	20.0 (9)
1'			530(d I=79)	105.0(d)
2'			3.90 (d, J = 7.8)	73.2(d)
2'			4.63 (br s)	73.2(a) 72.4(d)
J 4'			4.03 (01.3)	60.2(d)
5'			4 45 - 4 48 (m)	760(d)
5 6'			A 37 (dd I - 115 60)	63.3(t)
0			4.53 (d, J = 11.5)	(0.5, 0)
a) P ocerd	ad at 500 (111) and 125 MHz (^{13}C)	b) D a sandad	at 400 (111) and 100 MIL- (13C)	

(*m*, H–C(10)) and 1.35 (*s*, Me(28)) also supported β -orientation of the OH group at C(3) (*Fig.* 2). Hence, **1** was determined to be (23*E*)-5 β ,19-epoxycucurbita-6,23-diene- 3β ,22 ξ ,25-triol.

Compound **2** was obtained as colorless powder. The molecular formula was determined as $C_{36}H_{56}O_9$ by HR-ESI-MS (m/z 655.3810 [M + Na]⁺; calc. 655.3816), ¹³C-NMR, and DEPT experiments. The IR spectrum showed the presence of OH (3450)

and 3372 cm⁻¹) and C=C (1644 cm⁻¹) groups. The signals at δ (C) 105.0 (d), 73.2 (d), 72.4 (d), 69.2 (d), 76.0 (d), 63.3 (t), and $\delta(H)$ 5.30 (d, J = 7.9) (Table) suggested a β allopyranosyl moiety in 2 [2]. After acid hydrolysis of 2 with 3% HCl/MeOH, D-allose was detected by GC analysis. In the ¹H-NMR spectrum, the aglycone moiety in 2 showed resonances for seven Me groups at $\delta(H) 0.77(s)$, 0.84(s), 0.89(s), 0.92(d, J = 4.7), 1.53 (s), and 1.54 (s, 6 H). In the ¹³C-NMR and DEPT spectra, the aglycone moiety in 2 revealed 30 C-atom signals including seven Me, seven CH₂, and nine CH groups, and seven C_q-atoms. These signals indicated that 2 was a typical triterpenoid [17] [19] [20]. Comparison of the spectroscopic data of 2 with those of karavilagenin D [21] indicated that the two compounds were very similar except for one additional sugar unit in **2**. The signal of C(3) was shifted downfield from δ (C) 75.2 (d) in karavilagenin D to 85.3 (d) in 2, which indicated that the sugar unit was linked to C(3) in 2. The HMB correlations of the anomeric H-atom at $\delta(H)$ 5.30 (d, J=7.9, H–C(1')) with $\delta(C)$ 85.3 (d, C(3)) in 2 further confirmed the above deduction. The correlations between $\delta(H)$ 3.57 - 3.61 (m, H–C(3)) and 0.89 (s, Me(28)) in the ROESY spectrum indicated that the relative configuration of H–C(3) was α (Fig. 3). Hence, 2 was determined to be (23E)-5β,19-epoxycucurbita-6,23-dien-19-on-3β,25-diol 3-O-β-D-allopyranoside.

Fig. 3. Key HMB $(H \rightarrow C)$ and ROESY $(H \leftrightarrow H)$ correlations of 2

This project was supported by a program of the *National Natural Science Foundation of China* (Nos. U1132604, 81302670, and 81373288) and the cooperation program between *Chinese Academy of Sciences* and *Guangdong Province* (2013B09110011).

Experimental Part

General. D-Allose was purchased from Sigma (USA). Fractions were monitored by thin layer chromatography (TLC) and spots were visualized by heating and spraying with 10% H₂SO₄. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh, *Qingdao Marine Chemical*, P. R. China), *Lichroprep RP-18* (40–63 µm; *Merck*, Darmstadt, Germany), and *Sephadex LH-20* (*Pharmacia Fine Chemical Co., Ltd.*). GC: Shimadzu GC-17A gas chromatograph; TC-1 capillary column (30 m × 0.25 mm); detector, H₂ FID. Optical rotations: *JASCO DIP-370* digital polarimeter. IR Spectra: Shimadzu IR-450 instrument; KBr pellets; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR spectra: Bruker AV-400 or DRX-500 instruments; in (D₅)pyridine; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. ESI-MS and HR-ESI-MS: *VG-AUTOSPEC-3000* spectrometer; in *m/z* (rel. %).

Plant Material. Fresh immature fruits of *M. charantia* were collected from Chengjiang County, Yunnan Province, P. R. China, in August 2008. The sample was identified by Prof. *Shu-Kun Chen* and a voucher specimen (No. KIB20080826) was deposited at the Laboratory of Phytochemistry, Kunming Institute of Botany.

Extraction and Isolation. The dried and powdered fruits of *M. charantia* (37.49 kg) were extracted by maceration with 70% acetone. After filtration and evaporation of the solvent under reduced pressure, a residue (4.78 kg) was obtained. This residue was dissolved in H₂O (201) and then extracted successively with AcOEt (3×25 l). The AcOEt layer was concentrated to dryness to give an AcOEt extract (1.15 kg). The AcOEt extract was subjected to CC (SiO₂; CHCl₃/MeOH 1:0, 50:1, 20:1, and 0:1) to yield four fractions, *Frs.* 1–4. *Fr.* 2 (93.60 g) was separated by CC (SiO₂; CHCl₃/acetone 6:1 to 4:1) to afford **1** (12 mg), **3** (900 mg), and **4** (670 mg). Compounds **2** (12 mg) and **5** (119 mg) were isolated from *Fr.* 3 (84.45 g) by CC (SiO₂, CHCl₃/actone 4:1; *RP-18*, MeOH/H₂O 78:22 to 90:10; and *Sephadex LH-20*, MeOH).

Kuguacin X (=(23E)-5 β ,19-Epoxycucurbita-6,23-diene-3 β ,22 ξ ,25-triol = (3E,6S)-6-[(1R,4S,5S,8R, 9R,12S,13S,16S)-16-Hydroxy-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0^{1,13}.0^{4,12}.0^{5,9}]nonadec-2-en-8-yl]-2-methylhept-3-ene-2,5-diol; **1**). Colorless amorphous powder (MeOH). [a]₂₁²¹ = -83.9 (c = 1.7, MeOH). IR: 3468, 3402, 2969, 2943, 2824, 1734, 1644, 1380, 1154, 1083, 974, 913. ¹H-NMR (500 MHz): see Table. ¹³C-NMR (125 MHz): see Table. ESI-MS (pos.): 473 ([M + H]⁺). HR-ESI-MS (pos.): 473.3619 ([M + H]⁺, C₃₀H₄₉O₄⁺; calc. 473.3625).

Kuguaglycoside I (=(23E)-5 β ,19-Epoxycucurbita-6,23-dien-19-on-3 β ,25-diol 3-O- β -D-Allopyranoside = (1R,4S,5S,8R,9R,12S,13S,16S)-8-[(2R,4E)-6-Methoxy-6-methylhept-4-en-2-yl]-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0^{1,13}.0^{4,12}.0^{5,9}]nonadec-2-en-19-one 16-O- β -D-Allopyranoside; **2**). Colorless amorphous powder (MeOH). [α]₂₁²¹ = -69.2 (c = 1.6, MeOH). IR: 3450, 3372, 2971, 2880, 1689, 1651, 1428, 1387, 1079, 1028. ¹H-NMR (400 MHz): see Table. ¹³C-NMR (100 MHz): see Table. ESI-MS (neg.): 655 ([M + Na]⁺). HR-ESI-MS (neg.): 655.3810 ([M + Na]⁺, C₃₆H₃₆NaO⁺₉; calc. 655.3816).

Acid Hydrolysis of **2** for Sugar Analysis. The experiment was implemented using the method previously described [22]. Compound **2** (2 mg) was treated with 3% HCl/MeOH (5 ml) at 92° for 3 h. CHCl₃/H₂O 1:1 (5 ml) was used for extraction. The aq. phase was neutralized with Ag₂CO₃. The filtrate was concentrated to dryness under reduced pressure. Neutralized hydrolysates of **2** were dissolved in 0.6 ml of pyridine, then, 0.4 ml (Me₃Si)₂NH and 0.2 ml Me₃SiCl were added successively. The mixture was kept at 60° for 10 min under water bath condition. Next, the mixture was centrifuged for 20 min at $1.0 \cdot 10^4$ rmin⁻¹. The supernatant was subjected to GC analysis under the following conditions: column temp., 200°/260°; programmed increase, 3°/min; carrier gas, N₂ (1 ml min⁻¹); injector and detector temp., 260°; injection volume, 1 µl; split ratio, 1/50. GC Analysis showed the presence of β -D-allose (t_R 13.54 min) in **2**.

REFERENCES

- M. H. S. Jayawardena, N. M. W. de Alwis, V. Hettigoda, D. J. S. Fernando, J. Ethnopharmacol. 2005, 97, 215.
- [2] M.-J. Tan, J.-M. Ye, N. Turner, C. Hohnen-Behrens, C.-Q. Ke, C.-P. Tang, T. Chen, H.-C. Weiss, E.-R. Gesing, A. Rowland, D. E. James, Y. Ye, *Chem. Biol.* 2008, 15, 263.
- [3] R. Kumar, S. Balaji, T. S. Uma, P. K. Sehgal, J. Ethnopharmacol. 2009, 126, 533.
- [4] C.-K. Lii, H.-W. Chen, W.-T. Yun, K.-L. Liu, J. Ethnopharmacol. 2009, 122, 227.
- [5] S. Alam, M. Asad, S. M. B. Asdaq, V. S. Prasad, J. Ethnopharmacol. 2009, 123, 464.
- [6] B. Ling, G.-C. Wang, J. Ya, M.-X. Zhang, G.-W. Liang, Agric. Sci. China 2008, 7, 1466.
- [7] W. Luo, M. M. Zhao, B. Yang, G. L. Shen, G. H. Rao, Food Chem. 2009, 114, 499.
- [8] J.-C. Chen, C. B.-S. Lau, J. Y.-W. Chan, K.-P. Fung, P.-C. Leung, J.-Q. Liu, L. Zhou, M.-J. Xie, M.-H. Qiu, Planta Med. 2015, 81, 327.
- [9] J. Chen, R. Tian, M. Qiu, L. Lu, Y. Zheng, Z. Zhang, Phytochemistry 2008, 69, 1043.
- [10] J.-C. Chen, W.-Q. Liu, L. Lu, M.-H. Qiu, Y.-T. Zheng, L.-M. Yang, X.-M. Zhang, L. Zhou, Z.-R. Li, *Phytochemistry* 2009, 70, 133.

- [11] J.-C. Chen, X.-X. Yuan, L. Zhou, J.-Q. Liu, Y. Nian, Z.-R. Li, Y. Li, M.-J. Xie, M.-H. Qiu, *Helv. Chim. Acta* 2014, 97, 1546.
- [12] B.-H. Cheng, J.-C. Chen, J.-Q. Liu, L. Zhou, M.-H. Qiu, Helv. Chim. Acta 2013, 96, 1111.
- [13] G.-T. Zhao, J.-Q. Liu, Y.-Y. Deng, H.-Z. Li, J.-C. Chen, Z.-R. Zhang, L. Zhou, M.-H. Qiu, *Fitoterapia* 2014, 95, 75.
- [14] T. Murakami, A. Emoto, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 2001, 49, 54.
- [15] S. Nakamura, T. Murakami, J. Nakamura, H. Kobayashi, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 2006, 54, 1545.
- [16] H. Okabe, Y. Miyahara, T. Yamauchi, Tetrahedron Lett. 1982, 23, 77.
- [17] T. Akihisa, N. Higo, H. Tokuda, M. Ukiya, H. Akazawa, Y. Tochigi, Y. Kimura, T. Suzuki, H. Nishino, J. Nat. Prod. 2007, 70, 1233.
- [18] C.-I Chang, C.-R. Chen, Y.-W. Liao, H.-L. Cheng, Y.-C. Chen, C.-H. Chou, J. Nat. Prod. 2006, 69, 1168.
- [19] J. Ma, P. Whittaker, A. C. Keller, E. P. Mazzola, R. S. Pawar, K. D. White, J. H. Callahan, E. J. Kennelly, A. J. Krynitsky, J. I. Rader, *Planta Med.* 2010, 76, 1758.
- [20] J. Zhang, Y. Huang, T. Kikuchi, H. Tokuda, N. Suzuki, K.-I. Inafuku, M. Miura, S. Motohashi, T. Suzuki, T. Akihisa, *Chem. Biodiversity* 2012, 9, 428.
- [21] H. Matsuda, S. Nakamura, T. Murakami, M. Yoshikawa, Heterocycles 2007, 71, 331.
- [22] Z.-J. Li, J.-C. Chen, Y. Sun, N.-L. Song, B.-H. Cheng, L. Lu, W.-G. Ma, L. Zhou, X.-M. Zhang, Z.-R. Li, M.-H. Qiu, *Helv. Chim. Acta* 2009, *92*, 1853.

Received April 20, 2015